

Agenda

STUDY REVIEW PROCESS AND STAFF ENGAGEMENT

DECARBONIZATION
MEASURES ANALYZED

PATHWAY SELECTIONS, KEY METRICS, AND RESULTS

GHG Reduction Pathways

A FCM Funded Study to identify a sequence of GHG reduction measures that reduce GHG emissions for municipally owned facilities. Funding requires that the pathways achieve the following targets from the <u>2019 baseline</u> regardless of capital or operating cost constraints:

- Minimum Performance: 50% reduction in 10 years, 80% in 20 years
- Aggressive Deep Retrofit: 50% reduction in 5 years, 80% in 20 years
- Business-As-Usual: Like-for-like replacements with existing specs

GHG Reduction Pathways

Decarbonization Measures include efficiency improvements, air & water source heat pumps (ASHP/WSHP), Electrification of fossil fuel heating equipment, and renewable energy.

Site **Investigation**

- Review available documentation and reports
- Analyze utility data
- Conduct Site Visits
- Interview Facility **Operators**
- Identify current metering points and identify any additional metering required

Calibrated Energy Modelling

- eQuest energy model developed by Heffernan Energy Modelling
- Calibrated to utility data to ensure accuracy of simulations

Design Workshop

- Gather relevant stakeholders to review preliminary decarbonization measures and their feasibility
- Review asset management planning and equipment replacement needs
- Discuss budgetary considerations and implementation planning
- Select decarbonization measures for in-

Measure Level Analysis

- Develop detailed project metrics for all selected decarbonization measures
- Capital cost estimates, energy savings, implementation timelines, etc.

GHG Reduction Scenario Planning

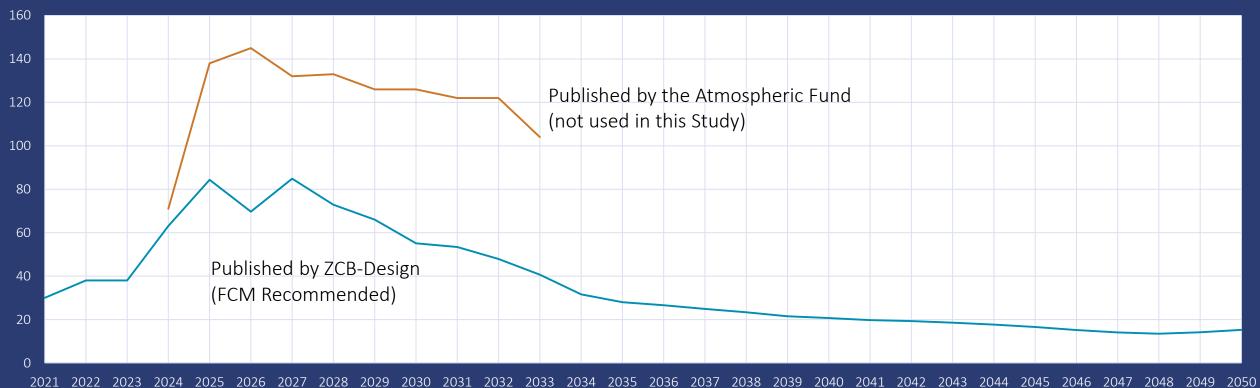
- Compile the identified measures into GHG reduction pathway scenarios for each facility
- Scenario packages included relevant project metrics and alternative pathways to achieving required outcomes were discussed

Decision Making Workshop

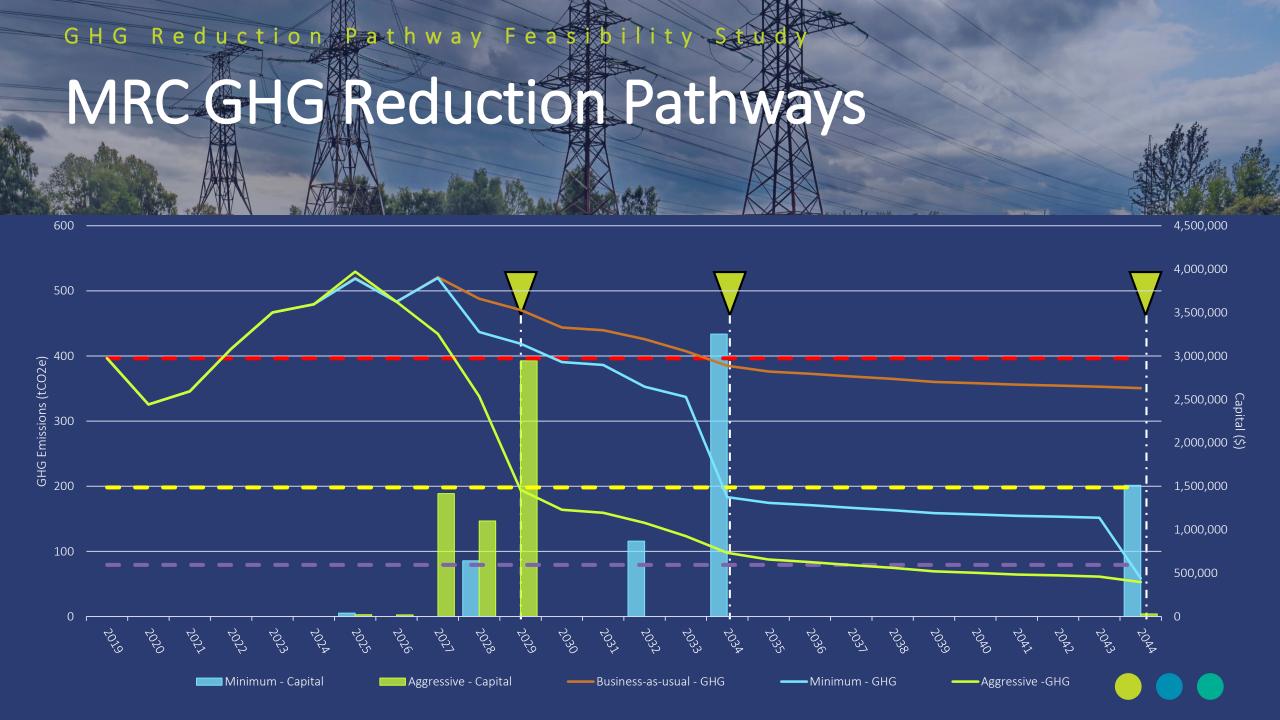
- Gather relevant stakeholders to examine GHG reduction pathways developed by Aladaco
- Engage stakeholders to find consensus on the preferred scenarios for inclusion the final report

Report and **Presentation**

- Develop draft Pathway Feasibility Study Report
- Facilitate stakeholder review and update accordingly
- Issue Final Pathway Feasibility Study Report
- Present summary of Pathway Feasibility Study to Town Council

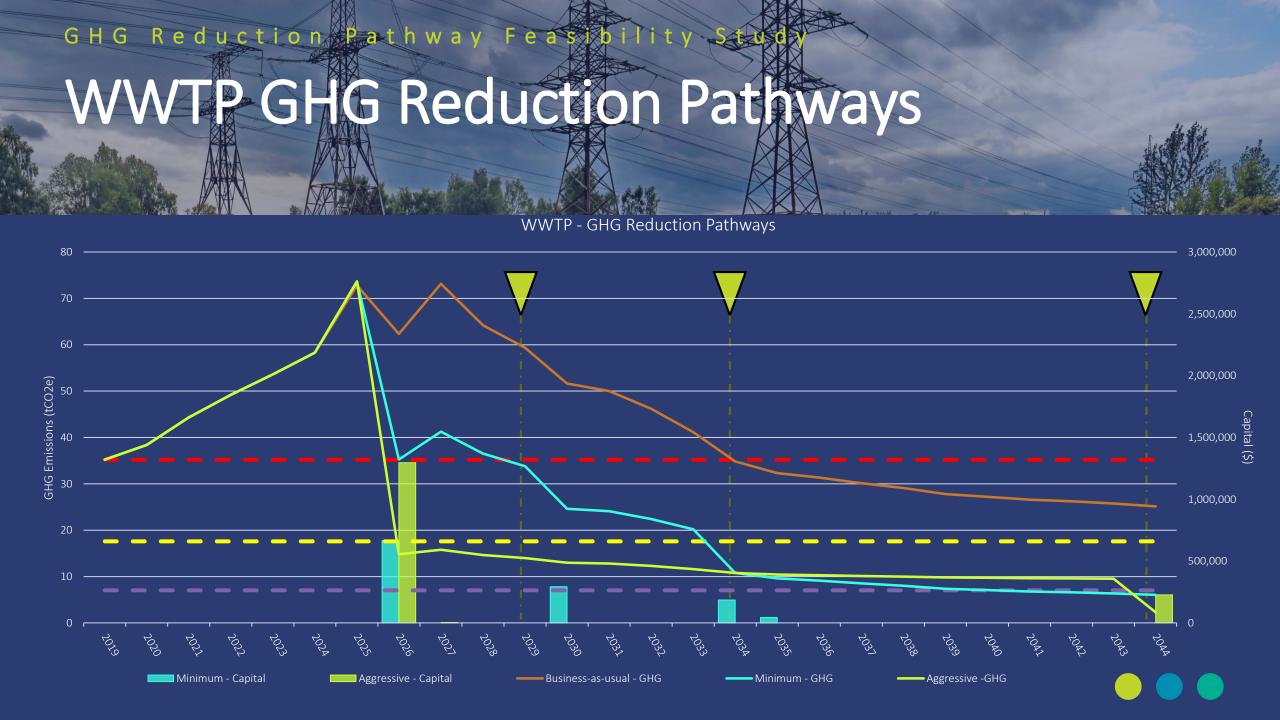


Ontario Average Emissions Factors (gCO2e/kWh)



MRC Decarbonization Measures

Measures	Annual Utility Savings	GHG Savings (tCO2 _e)	Implementation Cost	Net-Present Value	Simple Payback
Geothermal System Recommissioning	\$5,124	2.9	\$21,500	\$21,705	4.4
BAS Recommissioning	\$7,016	10.8	\$18,060	\$47,264	2.9
ASHP HRUs & MUA	-\$13,265	52.1	\$603,909	-\$746,191	-45.8
ASHP Dehumidifier (DH-3)	-\$41,125	65.3	\$1,037,910	-\$1,593,429	-25.3
WSHP Boilers	-\$32,464	121.2	\$2,721,424	-\$2,582,732	-84.0
Electrification of Unit Heaters	-\$2,238	4.2	\$20,996	-\$48,470	-9.4
Solar PV Panels	\$60,000	33.8	\$756,225	\$410,923	12.7


MRC Pathway Metrics

Metric	Minimum Performance	Aggressive Deep Retrofit	BAU (Baseline)
Capital Cost	\$6,313,490	\$5,532,788	\$2,208,394
External Funding	\$1,294,266	\$1,383,197	-
BAU Avoided Costs	\$2,208,394	\$2,208,394	
Residual Value at Study End	\$1,757,764	\$707,148	\$397,994
Incremental Costs	\$2,810,831	\$1,941,196	-
Operating Costs	\$11,572,724	\$11,725,763	\$10,472,299
5-year GHG Reduction (tCO2e)	-23 (-5.7%)	202 (50.9%)	-
10-year GHG Reduction (tCO2e)	203 (51.3%)	299 (75.3%)	-
20-year GHG Reduction (tCO2e)	330 (83.3%)	345 (86.9%)	-
Incremental LC Cost (20-year)	\$2,551,485	\$2,885,506	-
Cost per tonne CO2e abated (\$ILCC/tCO2e)	\$386	\$419	-

Measure Description	Min Performance Year	Aggressive Deep Retrofit Year
Geothermal Recommissioning	2025	2025
Water-Source Heat Pump Boilers	2034	2029
BAS Recommissioning	2025	2026
Air-source Heat Pump HRUs & MAU	2028	2027
Air-source Heat Pump DH3	2044	2028
Electrify UHs		2044
Solar PV Panels	2032	2027

WWTP Decarbonization Measures

Measures	Annual Utility Savings	GHG Savings (tCO2 _e)	Implementation Cost	Net-Present Value	Simple Payback
Reduce Exhaust Area for Filter Press	\$1,218	0.6	\$2,668	\$1,256	3.0
Replace Aerators with Aeration Blowers	\$15,425	7.5	\$265,936	-\$49,307	17.5
Thermostat Upgrades	\$5,119	6.7	\$4,290	\$97,464	0.9
Electrification of MUA	-\$523	0.2	\$36,681	-\$69,316	-73.0
Electrification of Tube Heaters	-\$3,254	9.2	\$155,595	-\$190,014	-47.8
Solar PV Panels 260 kW DC	\$48,000	25.3	\$645,725	\$228,373	13.5
Solar PV Panels 510 kW DC	\$96,000	50.6	\$1,266,038	\$485,131	13.3

WWTP Pathway Metrics

Metric	Minimum Performance	Aggressive Deep Retrofit	BAU (Baseline)
Capital Cost	\$1,190,016	\$1,525,183	-
External Funding	\$297,504	\$381,296	-
Residual Value at Study End	\$162,161	\$116,042	-
Operating Costs	\$1,733,395	\$679,080	\$2,836,827
20-Year Operational Cost Savings	\$1,103,432	\$2,157,747	-
20-Year LCC	\$2,463,747	\$1,706,924	-
5-year GHG Reduction (tCO2e)	0 (0%)	20 (55.5%)	-
10-year GHG Reduction (tCO2e)	24 (67.1%)	24 (67.2%)	-
20-year GHG Reduction (tCO2e)	29 (81.5%)	32 (91.3%)	-

Measure Description	Min Performance Year	Aggressive Deep Retrofit Year	
WWTP MUA Area Reduction	2026	2027	
Solar PV 510 kW DC	-	2026	
Aeration Blower	2030	-	
Thermostat Upgrades	2026	2026	
Electrification of MUA	2035	-	
Electrification of Tube Heaters	2034	2044	
Solar PV 260 kW DC	2026	-	

GHG Reduction Pathway Feasibility Study RESULTS SUMMARY

Facility	Pathway Selected	Capital Cost	Operational Cost Change	Funding Available	20-Year GHG Reduction
Maitland Recreation Centre	Minimum Performance Scenario	\$6,313,490	+\$1,100,425	\$1,294,266	330 tCO2e (83.3%)
Pollution Control Plant (WWTP)	Aggressive Deep Retrofit Scenario	\$1,525,183	-\$2,157,747	\$381,296	32 tCO2e (91.3%)

